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LOSS OF ADHESION OF A LAYER BONDED TO AN ELASTIC 
HALF SPACE CAUSED BY A CONCENTRATED CONTACT 

Sung-Ho Kim*, Leon Keer** and Herbert Cheng** 
(Received March 24, 1989) 

A model is constructed to analyze the effects of a concentrated contact on a layer that is perfectly bonded to an elastic half space, 
except for a debond region, which is analyzed as a frictional interfacial crack. The crack is assumed not to open and the growth 
is governed by a mode II stress intensity factor that is retarded by interfacial friction. This model may be used to study the fracture 
of hard coatings at the asperity scale where the failure is caused by loss of adhesion at the interface. 
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N O M E N C L A T U R E  
a : Half of contact length 
b(x) : Tangential dislocatiion density 
d : Half of crack length 
A : Frictional coefficient of the indenter 
f2 : Frictional coefficient of the crack 
H : Thickness of the layer 
Ho : Layer thickness corresponding to Ho/ao of 0.53 

(maximum interfacial shear stress occurs at Ho/ 
a0~0.53 for the case of tungsten coated to steel) 

v~ : Poisson's ratio 
xj .: Muskhelishvili constant 

xj (3-u~)/(l+u~) for plane stress 
x j=3 -4v~  for plane strain 

L : Crack length 
/~j : Shear modulus 
F : Shear modulus ratio of the layer to the substrate 

(~1/~o) 
A : Ratio of half length of crack to the layer thick- 

ness (L/2H) 
p(x) : Surface pressure 
t :Distance from the center of the crack to the 

center of the loading 
KL, Kr : Mode II stress intensity factors of the leading 

tip, trailing tip 
S(x) ,  T(x) : Normal and shear tractions 
u j, vj : Displacement components 
a.~(~), a~(~), a**(~) : Stress components 

Subscripts 
i = 1  : Layer, i = 0  : Substrate 

1. I N T R O D U C T I O N  

Some of the more important reasons for using a hard 
coating are to obtain better wear resistance, physical prop- 
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erties (conductivity, reflectance, color, etc.), corrosion resis- 
tance and to improve the range of load tolerance. For exam- 
ple, ceramic coatings have been used extensively to increase 
the wear resistance in many tools and machine elements. At 
present, there is very little analytical guidance to direct the 
engineer towards choosing the optimum coating thickness for 
long fatigue life. 

A hard coating may be a layer whose yield strength is much 
higher than the substrate. The deformation throughout the 
layer-substrate combination can be made elastic provided 
that the thickness of the layer is chosen sufficiently large that 
the peak Mises stresses occur there and decrease with depth 
to such magnitudes that substrate yielding will not occur. In 
the particular case for thick TiN layers (H/a > 1) deposited 
on titanium and steel, the Mises stresses normalyzed to the 
yield stress of the layer can be markedly reduced within the 
hard layer and thus, yielding in the layer substrate combina- 
tion can be prevented (Komvopoulos, 1987). Also, it was found 
from experiment that 0.8/~m thickness of the TiN layers was 
sufficient to eliminate yielding at and below the layer- 
substrate interface (Komvopoulos, 1987). Although yielding 
may be prevented in the substrate by thick layers, delamina- 
tion may occur if the critical interfacial shear strength is 
exceeded. For thin layers the peak stresses probably occur in 
the substrate and increasing the thickness could bring these 
damaging stresses to the interface. 

The analysis of hard coatings therefore requires careful 
study of the adhesive properties that bind the coating to the 
substrate. Since a major effect of a concentrated contact will 
be to stress the interface between the coating and the sub- 
strate in shear, a first step is to study the effects of a debond- 
ing at the interface and its tendency to propagate. It is noted 
that if the extent of contact is of the same order as the 
thickness of the coating, then from size considerations the 
analysis will be appropriate for the asperities that comprise 
the concentrated contact when the coating is thin (less than 1 
~m), 

To analyze the effects of crack face friction on growth, 
McClintock (McClintock, 1977) introduced the concept of the 
net tip shear stress, which is the stress available to produce 
the stress intensity factors at the crack tips. He considered a 
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short crack whose net tip shear stress was approximated as / 

the entire crack face. Hearle and Johnson J, constant over 
(Hearle and Johnson, 1985) developed a Green's function 
model for relatively long subsurface cracks which have stick H 
and slip regions in a single crack. They found that the range 
of mode II stress intensity factors experienced by the trailing 
tip of a subsurface crack is larger than that of the leading tip 
for relatively long cracks ( H / d <  1). From that, they further 
observed the rolling direction as a possible mechanism in the 
propagation of rolling contact fatigue cracks. 

As a preliminary study to the problem of a moving load, 
Chang et al. (Chang et al., 1984) considered the static problem 
of an elastic layer pressed onto an identical substrate. They 
included a uniform compressive surface load to prevent the 
possibility of developing subsurface tension, which causes the ! 

opening of the crack. Also, Sheppard at al. (Sheppard et al., J. 
1985) studied a moving load for a half space. 

This study extends their reasoning to the case of an inter- 
facial crack between an elastic layer and dissimilar elastic H 
half space, when the surface of the layer is subjected to a - - - ' r - "  
sliding point load and to a rigid indentation. The crack is 7 assumed not to open and the growth is governed by a mode II 
stress intensity factor which is retarded by the presence of the 
interracial crack face friction. This model may be used to 
study the fracture of hard coatings where the failure mecha- 
nism is loss of the interfacial adhesion. In this analysis sev- 
eral important parameters associated with possible layer 
debond have been studied such as crack face friction, crack 
length, the stiffness ratio of the layer and substrate, and size 
of contact relative to layer thickness. In the sequel the 
assumption is made that the debond length is sufficiently 
small that only one slip zone will occur. 

2. BASIC E Q U A T I O N S  A N D  
D E R I V A T I O N S  

An analytical model is derived for a concentrated line 
contact of an elastic layer which is perfectly bonded to a 
dissimilar half space except for a small region of debond, 
which is analyzed as an interfacial crack. In Fi~. ~ and for the 
rest of this study subscripts 1 and 0 refer to the layer and the 
half space, respectively. To obtain the desired solution, a 
superposition of the two following solutions is utilized : (1) A 
concentrated contact of an elastic layer perfectly bonded to  a 
half space(Fig. 2), (2) A gliding-type edge dislocation in the 
layer substrate interface(Fig. 3). The boundary conditions for 
the overall problem are the following: 

Boundary Conditions 
axyln = - fla~(1) y = - H (1) 
ayyOi = - -  P ( X )  y =  - H (2) 
ayy(l~ ~- ayy{o) y = 0 (3) 
axy(1) = O'xy(0) y : 0 (4)  

v~ = vo y = 0 (5) 
~ x  {0, x < - d o r x > d  

(u~- -u~  b(x) ,  - d < x < d  y = 0  (6) 

The concentrated contact problem of a layer with perfect 
bonding to a half space can be achieved by making b(x)  =0, 
whereas the problem of a gliding-type edge dislocation with 
free boundary in the layer can be achieved by making P(x)  = 
0. Hearle and Johnson (Hearle and Johnson, 1985) note that 
a point load (Fig. la) produced very close subsurface stress 
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distributions to a Hertzian load(Fig, lb) when the contact 
radius is relatively small ( 2 a / H <  1) Suitable elasticity solu- 
tions for these two problems are as follows: 

2.1 Hertzian Contact with Perfect Bonding 

2asus:i f~p(s)ds f[4Lj(4,y)B,(4)e-"~-~'d4 (7) 

ax~ , ~ , = f :p ( s ,  d s f : $ 2 R j ( $ , y ) B l ( $ ) e - " < x - " d 4  (11) 

j=O " the half space 
j = 1 " the layer 

Here, ,us is the shear modulus, xj =3-4v~ for plane strain 
and x~= ( 3 - u s ) / ( l + v ~ )  for plane stress, ~s being poisson's 
ratio, and B~, L j, Mj, Nj, P~ and R~ ard defined in the 
Appendix. 

2.2 Loading at Interfacial Crack 

2a~u~: i f[$D~ (4, y) 13o (4) e-"'d4 

2p~vs = f : [4]Ss (4 ,  y)Bo (4) e-~'Xd4 

o.~,= f_[r 

a,:yu,= i f]414] GJ (8, y)Bo(8)  e-'V'd8 

o~.,,,= f:4'H~(4,y) ;3oe-'~ 
j=O " the half space 
j = 1 " the layer 

(12) 

(13) 

(14) 

(15) 

(16) 
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Here, Bo, D~, Ej, Fj, G~ and H~ are defined in the Appendix. 

2.3 H e r t z i a n  C o n t a c t  w i t h  I n t e r f a e i a l  Crack  
Due to the compression produced by the asperity and global 

Hertzian contacts, the crack is assumed not to open ; it will 
either stick or slip as the load moves along the positive x 
direction with the region of stick or slip depending mainly 
upon the crack face friction and the crack length. The normal 
N(x) and shear S(x) tractions on y = 0  are 

N (x) - 2tZo 
~r (xo+ 1) (1-/~ 2) { - / ~ ( l + a )  zb(x) 

a 1 a + f b(~)K~(~, x)d~}-~-fop(s) 
K((s, x) ds 

2t~0 {(l+a) f '~b(~)d$ 
S(x)  = Z(xo+l)  ( I - B  2) j_.  ~ Z ~  

'~ 1 a 

K[(s ,x)ds  (17-18) 

where, a and fl are Dundurs' constants(Dundurs, 1969 ; Dun- 
durs, 1970) and K((s,  x), K[(s, x) are the stress kernels 
for undisturbed system, K~(~,x)  and K~(~ e, x) are stress 
kernels for the dislocation system which are defined in the 
Appendix. The first terms in (17) and (18) are due to the 
gliding-type edge dislocation(corrective solution) and the 
remaining terms are due to the surface load(undisturbed 
solution). We assume Coulomb friction in the slip zones as 

IS(x)[=f2sgn(x)N(x) in E (19) 
N(x)  <0 in ~ (20) 

where, f2 is the crack face friction and ~ is the slip zone. 
Accordingly, in the slip zones, we have following Cauchy 
integral equation of a second kind as 

b($) + (1 + a) f , T : ~ - d $  - a  (1 a)zb(x) 

+ f~  b(~)[Kf(& x)+ Asgn (x)K?(~, x)]d~ 

: 

4~o 
+f2sgn(x)K((s,x)]ds in Y!, (21) 

Additionally, since the crack is closed at the endpoints, 

f~b(*) d~ =o (22) 

In the stick zone 

IS (x)l< - A N  (x) (23) 
N (x) _< 0 (24) 

The dislocation density remains fixed in the stick zone as the 
crack advances. To solve (21), after making the following 
nondimensional definitions 

x/H=As $ /H=A$,  s /H=a/H~' ,  t / H = a / H ~ ,  
4/20 

p(x) - (x0+l) p(2) (25) 

a weight function method for solving the Cauchy-type singu- 
lar integral equation of a first kind is used ; when the loading 
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surface is frictionless, the solution is expressed as b(x)=r  
(x) ( 1 - x  ~) -'2(Miller and Keer, 1985). Once the integral equa- 
tion is solved, the crack tip stress intensity factors in the 
Fourier integral transform dormain may be readily calcu- 
lated as 

2 (1+ a) ,&-aoJ~ 
(Kn)L= (xo+l) (1-~]  2) r  (26) 

2 (1 + a) v/~-#0v~.~ (1~ 
(Kn) r = (xo+ 1) (1--/~ 2) . . . .  (27) 

Here, the subscripts L and T represent leading and trailing 
crack tips respectively as shown in Fig. 1 and Fig. 3. Also, 
(Kn)L is the stress intensity factors of the leading tip where 
the region of slip and lock is assumed to be determined by the 
relative location of the leading crack tip to the surface load, 
and (K~)r is the stress intensity factors of the trailing tip 
to the surface load, and (K.)~ is the stress intensity factors 
of the trailing tip where the region of slip and lock is assu- 
med to be determined by the relative location of the trailing 
tip to the surface load. This assumption cannot account for the 
growing slip and stick zone, however when the crack is short 
relatively to the layer thickness the difference with derives 
from that is small enough to be neglected(Sheppard et al., 
1985). Guided by a problem of a crack extending from -c~  
to + o~ when the layer is pressed on a substrate(Comninou 
et al., 1980), the lock starts x* as the load moves along the 
positive x direction where, 

x*/H = - - 1 [  (3 + 4f~)~/2+ 2f~] (28) 

It should be noted that the location of slip and lock boundary 
depends only upon the coefficient of the crack face friction 
not the magnitude of the concentrated load because of the 
absence of the uniform load. For example, slip occurs for 
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x / H <  - 1  and lock starts at x / H  = - 1  as the load moves 
when f~=0.5. For a finite length crack similar behavior is 
expected. As long as the loading is applied to a final value 
without unloading before the first locking zone is reached 
during the passage of a load, the slip for the first stage is 
independent of loading sequence. In this analysis only short 
crack(L /H = 0.25) is considered so that the stress distribution 
on the crack face is assumed to be approximately as constant. 

3. N U M E R I C A L  R E S U L T S  

The mode II stress intensity factor is calculated first when 
the layer is subjected to a moving point load. This calculation 
is appropriate for tayers which are thick compared to the 
contact region or asperity dimension. The number of possible 
slip zones can be determined by the magnitude of the crack 
face friction and the crack length. Sheppard et al.(Sheppard 
et al., 1985) found that a crack whose length is shorter than 
the layer thickness, has only one slip zone, while a crack 
whose length is longer than the layer thickness has two slip 
zones in a single crack when the crack face friction is 
assumed to be 0.5. The size and the location of the slip and 
stick regions and also the range of the stress intensity factors 
depend largely upon the crack face friction and the crack 
length. Fig. 4 shows that the maximum and minimum values 
of the stress intensity factors at crack tips L and T are 
almost identical when the crack length L / H  is less than 0. 
25(Sheppard et al., 1985). The validity of this assessment 
deteriorates somewhat when the crack friction is very small. 
Numerical results in this analysis match well with their ~ .  

K ~ a l  : T ~ ' J - ~  n,o C 
2(:> - * ~  .+ ++,~ ~ o : ,  B .2 -  
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Fig. 4 
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Maximum and minimum values of stress intensity factors 
at B and C as functions of crack length L/a for various 
coefficient of friction(Sheppard et al., 1985) 

results when L / H  = 0.25. 
In this analysis, cracks whose lengths are short enough to 

produce only one slip zone are considered. The case for which 
numerical results will be given is that of a tungsten coating 
on a steel base which represents a hard coating whose shear 
modulus is twice stiffer than that of the substrate. Fig. 5 and 
6 are the mode II stress intensity factors experienced by a 
passage of moving load. While the crack stays locked there is 
no change of displacements along the crack so that stress 
intensity factors at the tips remain constant. Therefore, the 
flat part of the line in the figures represents a locked region. 
The stress intensity factors are asymmetric with respect to t 
because uf the history dependency of the problem. As the 
crack face friction increases from 0 to 0.7, the range of stress 
intensity factors decreases significantly as does the size of the 
slipped region. Generally, the friction coefficient depends 
upon the combinations of the materials and can be as high as 
0.7 or 0.8(Yoshimura, Rubin and Hahn, 1984) which causes a 
significant reduction of stress intensity factors. For very 
short cracks(L/H--0.25) with crack face friction f2 = 0.5, the 
stress intensity factors of the leading tip and trailing tip are 
almost identical during the entire passage of a load except 
near the region of the slip and stick boundaries. 

Next, the case where the surface is loaded by a finite length 
contact at the asperity scale is studied. For many industrial 
applications a single asperity contact: length may be approx- 
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Material 1 : Tungsten 
Material 0 : Steel 

thickness on the interfacial shear stress for a typical asperity 
contact of a contact length 2a and load P. Fig. 7 shows the 
influence of coating thickness on the non-dimensional inter- 
facial shear stress, o,yHo/P, where axy is the interfacial shear 
stress, Ho is the coating thickness corresponding to a coating 
thickness to contact length ratio Ho/ao of 0.53 when the layer 
is tungsten and the substrate is steel (The maximum inter- 
facial stress will occur at Ho/ao~0.53). Fig. 8 shows the effect 
of coating thickness on the stress intensity factors for a 
frictionless crack. Qualitatively similar behavior to the previ- 
ous cases is expected for cracks with friction. Both the 
interfacial shear and stress intensity factors are seen to 
increase with the coating thickness for H/Ho<I, and 
decrease with the coating thickness for H/Ho > 1. Therefore, 
it is concluded that the layer thickness should be designed to 
be sufficiently thin to minimize the interfacial shear stress 
and assure a good interfacial bond. However, when H/Ho< 1 
the maximum Mises stresses lie in the substrate thereby 
posing the possibility of yielding and crack initiation. It is up 
to the designer to decide which of these possibilities is critical 
for the component's use. 
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imated as 20-40/~m while the coating thickness can range 
from 0.5 to 5/~m. Therefore, ratios of layer thickness to the 
contact length(H/a) ranging from 0.125 to 1.25 are examined 
here. The most significant finding is the effect of coating 
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+ (e -s~"-  1)}]e -*~ 

= 5 [ -  2~H + (2Sy - 1) (e s t " -  1) - Qo {25H G, ( S, y) (2Sy 

- 1 )  + (e-2~ -ty 

H~($, y) = ~ [ 2 S H -  (25y-3)  (eS~ 1) - Qo{25H (25y- 3) 

+ (e - ~ " -  1) }]e -~y 

= 2 ( 1 -  a) f~[{  - (1 + gr~) + ( a -  grs) e -~~ }cos K((s, X) 

~ ] ( x - s - t )  +f~{(gYl-B) + ( B -  ~2) e-S~ 
7] (x - s -  t)]e'("-~)/Ad~ 

K[(s,x) = 2 ( l - a ) f o ~ [ {  - (B+ ~ ) +  (B+ ~2) e-2~"}sin 

(x  - s -  t)  + f ,  { -  ( ~ ,  + t)  + ( a  + ~)'s) e - 2 ~  
( x -  s -  t) ]e~(n-~ 

x) = - ( 1 -  a ~) f ~  ~a (V)/Asin v (S - x )  Kf(S, dz~ 

x) = - ( 1 -  u s) f |  ~', (7])/Asin K~($, ( S - x )  d~ 7/ 
./o 

where, 

z=Zy 
~ , =  ( I+B)$H,  gr2=(a-B)SH 
gr3 = - 2 (1 + B )  2 S 2 H Z -  2B + B  (1 + a )  e -2~ 
gr,=2(I+B)$H{(I+B)$H- ( l - B )  } + I + B  2 -  (a+B2) e -zoH 

A = ( 1 - ~ 2 )  e~,~, + ( a 2 _ B D  e -~t" - 2 ( a - B  2) 
-4S2H2(a-B) ( I+B) 
F ( x o + l ) -  (x ,+ l )  ~ F ( X o - 1 ) -  (x ,+l )  

a = F ( x o + l ) + ( x , + l ) '  / J = T ( x ~ D + ( x l + l )  

Here, a and B are Dundurs' constants(Dundurs, 1969; Dun- 
durs, 1970). 


